
ARM7500FE Data Sheet
ARM DDI 0077B

6-1

111

Open Access - Preliminary

The chapter describes the ARM processor instruction and data cache, and its write
buffer.

6.1 Instruction and Data Cache (IDC) 6-2

6.2 Read-Lock-Write 6-3

6.3 IDC Enable/Disable and Reset 6-3

6.4 Write Buffer (Wb) 6-3

6.5 Coprocessors 6-5

Cache, Write Buffer and
Coprocessors6

Named Partner Confidential - Preliminary Draft

Cache, Write Buffer and Coprocessors

ARM7500FE Data Sheet
ARM DDI 0077B

6-2

Open Access - Preliminary

6.1 Instruction and Data Cache (IDC)
ARM processor contains a 4Kbyte mixed instruction and data cache. The IDC has 256
lines of 16 bytes (4 words), organized as a 4-way set associative cache, and uses the
virtual addresses generated by the processor core. The IDC is always reloaded a line
at a time (4 words). It may be enabled or disabled via the ARM processor Control
Register and is disabled on nRESET.

The operation of the cache is further controlled by the Cacheable or C bit stored in the
Memory Management Page Table (see the Memory Management Unit chapter). For
this reason, in order to use the IDC, the MMU must be enabled. The two functions may
however be enabled simultaneously, with a single write to the Control Register.

6.1.1 Cacheable bit

The Cacheable bit determines whether data being read may be placed in the IDC and
used for subsequent read operations. Typically main memory will be marked as
Cacheable to improve system performance, and I/O space as Non-cacheable to stop
the data being stored in ARM7500FE's cache. [For example if the processor is polling
a hardware flag in I/O space, it is important that the processor is forced to read data
from the external peripheral, and not a copy of initial data held in the cache]. The
Cacheable bit can be configured for both pages and sections.

6.1.2 IDC operation

In the ARM processor the cache will be searched regardless of the state of the C bit,
only reads that miss the cache will be affected.

Cacheable Reads C = 1

A linefetch of 4 words will be performed and it will be
randomly placed in a cache bank.

Uncacheable Reads C = 0

An external memory access will be performed and the
cache will not be written.

6.1.3 IDC validity

The IDC operates with virtual addresses, so care must be taken to ensure that its
contents remain consistent with the virtual to physical mappings performed by the
Memory Management Unit. If the Memory Mappings are changed, the IDC validity
must be ensured.

Software IDC flush

The entire IDC may be marked as invalid by writing to the ARM processor IDC Flush
Register (Register 7). The cache will be flushed immediately the register is written, but
note that the next two instruction fetches may come from the cache before the register
is written.

Cache, Write Buffer and Coprocessors

ARM7500FE Data Sheet
ARM DDI 0077B

6-3

Open Access - Preliminary

6.1.4 Doubly mapped space

Since the cache works with virtual addresses, it is assumed that every virtual address
maps to a different physical address. If the same physical location is accessed by
more than one virtual address, the cache cannot maintain consistency, since each
virtual address will have a separate entry in the cache, and only one entry will be
updated on a processor write operation. To avoid any cache inconsistencies, both
doubly-mapped virtual addresses should be marked as uncacheable.

6.2 Read-Lock-Write
The IDC treats the Read-Locked-Write instruction as a special case. The read phase
always forces a read of external memory, regardless of whether the data is contained
in the cache. The write phase is treated as a normal write operation (and if the data is
already in the cache, the cache will be updated). Externally the two phases are flagged
as indivisible by asserting the LOCK signal.

6.3 IDC Enable/Disable and Reset
The IDC is automatically disabled and flushed on nRESET. Once enabled, cacheable
read accesses will cause lines to be placed in the cache.

6.3.1 To enable the IDC

To enable the IDC, make sure that the MMU is enabled first by setting bit 0 in Control
Register, then enable the IDC by setting bit 2 in Control Register. The MMU and IDC
may be enabled simultaneously with a single control register write.

6.3.2 To disable the IDC

To disable the IDC, clear bit 2 in the Control Register and perform a flush by writing to
the flush register.

6.4 Write Buffer (Wb)
The ARM processor write buffer is provided to improve system performance. It can
buffer up to 8 words of data, and 4 independent addresses. It may be enabled or
disabled via the W bit (bit 3) in the ARM processor Control Register and the buffer is
disabled and flushed on reset.

The operation of the write buffer is further controlled by one bit, B, or Bufferable, which
is stored in the Memory Management Page Tables. For this reason, in order to use the
write buffer, the MMU must be enabled.

The two functions may however be enabled simultaneously, with a single write to the
Control Register. For a write to use the write buffer, both the W bit in the Control
Register, and the B bit in the corresponding page table must be set.

Named Partner Confidential - Preliminary Draft

Cache, Write Buffer and Coprocessors

ARM7500FE Data Sheet
ARM DDI 0077B

6-4

Open Access - Preliminary

6.4.1 Bufferable bit

This bit controls whether a write operation may or may not use the write buffer.
Typically main memory will be bufferable and I/O space unbufferable. The Bufferable
bit can be configured for both pages and sections.

6.4.2 Write buffer operation

When the CPU performs a write operation, the translation entry for that address is
inspected and the state of the B bit determines the subsequent action. If the write
buffer is disabled via the ARM processor Control Register, bufferable writes are
treated in the same way as unbuffered writes.

Bufferable write

If the write buffer is enabled and the processor performs a write to a bufferable area,
the data is placed in the write buffer at FCLK speeds and the CPU continues
execution. The write buffer then performs the external write in parallel. If however the
write buffer is full (either because there are already 8 words of data in the buffer, or
because there is no slot for the new address) then the processor is stalled until there
is sufficient space in the buffer.

Unbufferable writes

If the write buffer is disabled or the CPU performs a write to an unbufferable area, the
processor is stalled until the write buffer empties and the write completes externally,
which may require synchronization and several external clock cycles.

Read-lock-write

The write phase of a read-lock-write sequence is treated as an Unbuffered write, even
if it is marked as buffered.

Note: A single write requires one address slot and one data slot in the write buffer; a
sequential write of n words requires one address slot and n data slots. The total of 8
data slots in the buffer may be used as required. So for instance there could be 3
non-sequential writes and one sequential write of 5 words in the buffer, and the
processor could continue as normal: a 5th write or an 6th word in the 4th write would
stall the processor until the first write had completed.

To enable the write buffer

To enable the write buffer, ensure the MMU is enabled by setting bit 0 in the Control
Register, then enable the write buffer by setting bit 3 in the Control Register. The MMU
and write buffer may be enabled simultaneously with a single write to the Control
Register.

To disable the write buffer

To disable the write buffer, clear bit 3 in the Control Register.

Note: Any writes already in the write buffer will complete normally.

Cache, Write Buffer and Coprocessors

ARM7500FE Data Sheet
ARM DDI 0077B

6-5

Open Access - Preliminary

6.5 Coprocessors
The on-chip FPA is a coprocessor and its operation is described in Chapters 8, 9, and
10.

The ARM processor also has an internal coprocessor designated #15 for internal
control of the device.

However, the ARM7500FE has no external coprocessor bus, so it is not possible to
add further external coprocessors to this device. All coprocessor operations other than
those implemented by the FPA, or MRC or MCR to registers 0 to 7 on
coprocessor #15, will cause the undefined instruction trap to be taken.

Named Partner Confidential - Preliminary Draft

Cache, Write Buffer and Coprocessors

ARM7500FE Data Sheet
ARM DDI 0077B

6-6

Open Access - Preliminary

ARM7500FE Data Sheet
ARM DDI 0077B

7-1

111

Open Access - Preliminary

This chapter describes the ARM processor Memory Management Unit.

7.1 Introduction 7-2

7.2 MMU Program-accessible Registers 7-2

7.3 Address Translation 7-4

7.4 Translation Process 7-4

7.5 Translating Section References 7-8

7.6 Translating Small Page References 7-10

7.7 Translating Large Page References 7-11

7.8 MMU Faults and CPU Aborts 7-12

7.9 Fault Address & Fault Status Registers (FAR & FSR) 7-12

7.10 Domain Access Control 7-13

7.11 Fault-checking Sequence 7-14

7.12 External Aborts 7-16

7.13 Effect of Reset 7-17

ARM Processor MMU7

Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-2

Open Access - Preliminary

7.1 Introduction
The MMU performs two primary functions: it translates virtual addresses into physical
addresses, and it controls memory access permissions. The MMU hardware required
to perform these functions consists of a Translation Look-aside Buffer (TLB), access
control logic, and translation table walking logic.

The MMU supports memory accesses based on Sections or Pages:

Sections are comprised of 1MB blocks of memory.

Pages Two different page sizes are supported:

Small Pages consist of 4KB blocks of memory.
Additional access control mechanisms are
extended within Small Pages to 1KB Sub-
Pages.

Large Pages consist of 64KB blocks of memory.
Additional access control mechanisms are
extended within Large Pages to 16KB
SubPages. Large Pages are supported
to allow mapping of a large region of
memory while using only a single entry in
the TLB.

The MMU also supports the concept of domains - areas of memory that can be defined
to possess individual access rights. The Domain Access Control Register is used
to specify access rights for up to 16 separate domains.

The TLB caches 64 translated entries. During most memory accesses, the TLB
provides the translation information to the access control logic.

If the TLB contains a translated entry for the virtual address, the access control logic
determines whether access is permitted. If access is permitted, the MMU outputs
the appropriate physical address corresponding to the virtual address. If access is not
permitted, the MMU signals the CPU to abort.

If the TLB misses (it does not contain a translated entry for the virtual address),
the translation table walk hardware is invoked to retrieve the translation information
from a translation table in physical memory. Once retrieved, the translation information
is placed into the TLB, possibly overwriting an existing value. The entry to be
overwritten is chosen by cycling sequentially through the TLB locations.

When the MMU is turned off (as happens on reset), the virtual address is output
directly onto the physical address bus.

7.2 MMU Program-accessible Registers
The ARM processor provides several 32-bit registers which determine the operation
of the MMU. The format for these registers and a brief description is shown in Figure
7-1:MMU register summary on page 7-3. Each register will be discussed in more detail
within the section that describes its use.

Data is written to and read from the MMUs registers using the ARM CPU's MRC and
MCR coprocessor instructions.

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-3

Open Access - Preliminary

 Figure 7-1: MMU register summary

Translation table base register

The Translation Table Base Register holds the physical address of the base of
the translation table maintained in main memory. Note that this base must reside on
a 16KB boundary.

Domain access control register

The Domain Access Control Register consists of sixteen 2-bit fields, each of which
defines the access permissions for one of the sixteen Domains (D15-D0).

Note: The registers not shown are reserved and should not be used.

Fault status register

The Fault Status Register indicates the domain and type of access being attempted
when an abort occurred. Bits 7:4 specify which of the sixteen domains (D15-D0) was
being accessed when a fault occurred. Bits 3:1 indicate the type of access being
attempted. The encoding of these bits is different for internal and external faults
(as indicated by bit 0 in the register) and is shown in Table 7-4:Priority encoding of
fault status on page 7-13. A write to this register flushes the TLB.

Fault address register

The Fault Address Register holds the virtual address of the access which was
attempted when a fault occurred. A write to this register causes the data written to be
treated as an address and, if it is found in the TLB, the entry is marked as invalid.
(This operation is known as a TLB purge). The Fault Status Register and Fault
Address Register are only updated for data faults, not for prefetch faults.

Domain Access Control

0 Control 1 D P W AC M

Translation Table Base

0123456789101112131415

0 0 0 0 Domain Status

012345678910111213141516171819202122232425262728293031

Flush TLB

TLB Purge Address

Fault Address

Register

1 write

2 write

3 write

5 read

5 write

6 read

6 write

Fault Status

S BR

Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-4

Open Access - Preliminary

7.3 Address Translation
The MMU translates virtual addresses generated by the CPU into physical addresses
to access external memory, and also derives and checks the access permission.
Translation information, which consists of both the address translation data and
the access permission data, resides in a translation table located in physical memory.
The MMU provides the logic needed to traverse this translation table, obtain
the translated address, and check the access permission.

There are three routes by which the address translation (and hence permission check)
takes place. The route taken depends on whether the address in question has been
marked as a section-mapped access or a page-mapped access; and there are two
sizes of page-mapped access (large pages and small pages). However, the translation
process always starts out in the same way, as described below, with a Level One fetch.
A section-mapped access only requires a Level One fetch, but a page-mapped access
also requires a Level Two fetch.

7.4 Translation Process

7.4.1 Translation table base

The translation process is initiated when the on-chip TLB does not contain an entry for
the requested virtual address. The Translation Table Base (TTB) Register points to
the base of a table in physical memory which contains Section and/or Page
descriptors. The 14 low-order bits of the TTB Register are set to zero as illustrated in
Figure 7-2: Translation table base register; the table must reside on a 16KB boundary.

 Figure 7-2: Translation table base register

7.4.2 Level one fetch

Bits 31:14 of the Translation Table Base register are concatenated with bits 31:20 of
the virtual address to produce a 30-bit address as illustrated in Figure 7-3:Accessing
the translation table first level descriptors on page 7-5. This address selects a
four-byte translation table entry which is a First Level Descriptor for either a Section or
a Page (bit1 of the descriptor returned specifies whether it is for a Section or Page).

0131431

Translation Table Base

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-5

Open Access - Preliminary

 Figure 7-3: Accessing the translation table first level descriptors

7.4.3 Level one descriptor

The Level One Descriptor returned is either a Page Table Descriptor or a Section
Descriptor, and its format varies accordingly. The following figure illustrates the format
of Level One Descriptors.

 Figure 7-4: Level one descriptors

The two least significant bits indicate the descriptor type and validity, and are
interpreted as in Table 7-1:Interpreting level one descriptor bits [1:0] on page 7-6.

0192031

031

Table Index Section Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

18
12

First Level Descriptor
031

01234589101112192031

0 Fault

Page

Section

Reserved

0

0 1

1 0

1 1

C B

Domain

DomainAP

Page Table Base Address

Section Base Address 1

1

Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-6

Open Access - Preliminary

7.4.4 Page table descriptor

Bits 3:2 are always written as 0.

Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the Domain
Access Control Register) that contain the primary access controls.

Bits 31:10 form the base for referencing the Page Table Entry. (The page table
index for the entry is derived from the virtual address as illustrated in
Figure 7-7:Small page translation on page 7-10).

If a Page Table Descriptor is returned from the Level One fetch, a Level Two fetch is
initiated, as described below.

7.4.5 Section descriptor

Bits 3:2 (C, & B) control the cache- and write-buffer-related functions as
follows:

C - Cacheable data at this address will be placed in the
cache (if the cache is enabled).

B - Bufferable data at this address will be written through
the write buffer (if enabled).

Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the
Domain Access Control Register) that contain the primary
access controls.

Bits 11:10 (AP) specify the access permissions for this section (see
Table 7-2:Interpreting access permission (AP) bits on
page 7-7). The interpretation depends upon the setting of
the S and R bits (control register bits 8 and 9). Note that
the Domain Access Control specifies the primary access
control; the AP bits only have an effect in client mode.
Refer to section on access permissions.

Bits 19:12 are always written as 0.

Bits 31:20 form the corresponding bits of the physical address for
the 1MB section.

Value Meaning Notes

 0 0 Invalid Generates a Section Translation Fault

 0 1 Page Indicates that this is a Page Descriptor

 1 0 Section Indicates that this is a Section Descriptor

 1 1 Reserved Reserved for future use

 Table 7-1: Interpreting level one descriptor bits [1:0]

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-7

Open Access - Preliminary

AP S R Supervisor
permissions

User
permissions

Notes

00 0 0 No Access No Access Any access generates a permission fault

00 1 0 Read Only No Access Supervisor read only permitted

00 0 1 Read Only Read Only Any write generates a permission fault

00 1 1 Reserved

01 x x Read/Write No Access Access allowed only in Supervisor mode

10 x x Read/Write Read Only Writes in User mode cause permission fault

11 x x Read/Write Read/Write All access types permitted in both modes.

xx 1 1 Reserved

 Table 7-2: Interpreting access permission (AP) bits

Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-8

Open Access - Preliminary

7.5 Translating Section References
Figure 7-6: Section translation illustrates the complete Section translation sequence.
Note that the access permissions contained in the Level One Descriptor must be
checked before the physical address is generated. The sequence for checking access
permissions is described below.

7.5.1 Level two descriptor

If the Level One fetch returns a Page Table Descriptor, this provides the base address
of the page table to be used. The page table is then accessed as described in Figure
7-7: Small page translation, and a Page Table Entry, or Level Two Descriptor, is
returned. This in turn may define either a Small Page or a Large Page access. Figure
7-5:Page table entry (level two descriptor) on page 7-8 shows the format of Level Two
Descriptors.

 Figure 7-5: Page table entry (level two descriptor)

The two least significant bits indicate the page size and validity, and are interpreted as
follows:

Value Meaning Notes

 0 0 Invalid Generates a Page Translation Fault

 0 1 Large Page Indicates that this is a 64KB Page

 1 0 Small Page Indicates that this is a 4KB Page

 1 1 Reserved Reserved for future use

 Table 7-3: Interpreting page table entry bits 1:0

01234589101112192031

0 Fault

Large Page

Small Page

Reserved

0

0 1

1 0

1 1

C Bap3

Large Page Base Address

Small Page Base Address

671516

ap3

ap2

ap2

ap1

ap1

ap0

ap0 C B

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-9

Open Access - Preliminary

 Figure 7-6: Section translation

Bit 2 (B - Bufferable) indicates that data at this address will be written
through the write buffer (if the write buffer is enabled).

Bit 3 (C - Cacheable) indicates that data at this address will be placed in
the IDC (if the cache is enabled).

Bits 11:4 specify the access permissions (ap3 - ap0) for the four sub-pages and
interpretation of these bits is described earlier in
Table 7-1:Interpreting level one descriptor bits [1:0] on page 7-6.

Bits 15:12 for large pages, these bits are programmed as 0.

Bits 31:12 (small pages) or bits 31:16 (large pages) are used to form the
corresponding bits of the physical address - the physical page number. (The page
index is derived from the virtual address as illustrated in Figure 7-7:Small page
translation on page 7-10 and Figure 7-8:Large page translation on page 7-11).

0192031

1 0C BDomainAPSection Base Address

031

Table Index Section Index

Virtual Address

Translation Base

01234589101112192031

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

0192031

Section Base Address Section Index

Physical Address
12

20

18
12

1

Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-10

Open Access - Preliminary

7.6 Translating Small Page References
Figure 7-7: Small page translation illustrates the complete translation sequence for a
4KB Small Page. Page translation involves one additional step beyond that of
a section translation: the Level One descriptor is the Page Table descriptor, and this is
used to point to the Level Two descriptor, or Page Table Entry. (Note that the access
permissions are now contained in the Level Two descriptor and must be checked
before the physical address is generated. The sequence for checking access
permissions is described later).

 Figure 7-7: Small page translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

1 0C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

0111231

Page Index

Physical Address

12

8

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-11

Open Access - Preliminary

7.7 Translating Large Page References
Figure 7-8: Large page translation illustrates the complete translation sequence for a
64KB Large Page. Note that since the upper four bits of the Page Index and low-order
four bits of the Page Table index overlap, each Page Table Entry for a Large Page
must be duplicated 16 times (in consecutive memory locations) in the Page Table.

 Figure 7-8: Large page translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

0 1C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

031

Page Index

Physical Address

12

8

1516

1516

1516

Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-12

Open Access - Preliminary

7.8 MMU Faults and CPU Aborts
The MMU generates four types of faults:

• Alignment Fault

• Translation Fault

• Domain Fault

• Permission Fault

The access control mechanisms of the MMU detect the conditions that produce these
faults. If a fault is detected as the result of a memory access, the MMU will abort
the access and signal the fault condition to the CPU. The MMU is also capable of
retaining status and address information about the abort. The CPU recognizes two
types of abort: data aborts and prefetch aborts, and these are treated differently by
the MMU.

If the MMU detects an access violation, it will do so before the external memory access
takes place, and it will therefore inhibit the access.

7.9 Fault Address & Fault Status Registers (FAR & FSR)
Aborts resulting from data accesses (data aborts) are acted upon by the CPU
immediately, and the MMU places an encoded 4 bit value FS[3:0], along with the 4-bit
encoded Domain number, in the Fault Status Register (FSR). In addition, the virtual
processor address which caused the data abort is latched into the Fault Address
Register (FAR). If an access violation simultaneously generates more than one source
of abort, they are encoded in the priority given in Table 7-4:Priority encoding of fault
status on page 7-13.

CPU instructions on the other hand are prefetched, so a prefetch abort simply flags
the instruction as it enters the instruction pipeline. Only when (and if) the instruction is
executed does it cause an abort; an abort is not acted upon if the instruction is not
used (i.e. it is branched around). Because instruction prefetch aborts may or may not
be acted upon, the MMU status information is not preserved for the resulting CPU
abort; for a prefetch abort, the MMU does not update the FSR or FAR.

The sections that follow describe the various access permissions and controls
supported by the MMU and detail how these are interpreted to generate faults.

In Table 7-4:Priority encoding of fault status on page 7-13, x is undefined, and may
read as 0 or 1.

Notes: Any abort masked by the priority encoding may be regenerated by fixing the primary
abort and restarting the instruction. In fact this register will contain bits[8:5] of
the Level 1 entry which are undefined, but would encode the domain in a valid entry.

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-13

Open Access - Preliminary

7.10 Domain Access Control
MMU accesses are primarily controlled via domains. There are 16 domains, and each
has a 2-bit field to define it. Two basic kinds of users are supported:

Clients Clients use a domain

Managers Managers control the behavior of the domain.

The domains are defined in the Domain Access Control Register. Figure 7-9: Domain
access control register format illustrates how the 32 bits of the register are allocated
to define the sixteen 2-bit domains.

 Figure 7-9: Domain access control register format

Table 7-5: Interpreting access bits in domain access control register defines how
the bits within each domain are interpreted to specify the access permissions.

Priority Source FS[3210] Domain [3:0] FAR

Highest Alignment 00x1 x valid

Translation (Section) 0101 Note 2 valid

 Translation (Page) 0111 valid valid

Domain (Section) 1001 valid valid

Domain (Page) 1011 valid valid

Permission (Section) 1101 valid valid

Lowest Permission (Page) 1111 valid valid

 Table 7-4: Priority encoding of fault status

Value Meaning Notes

00 No Access Any access will generate a Domain Fault.

01 Client Accesses are checked against the access permission bits in
the Section or Page descriptor.

10 Reserved Reserved. Currently behaves like the no access mode.

11 Manager Accesses are NOT checked against the access Permission bits so
a Permission fault cannot be generated.

 Table 7-5: Interpreting access bits in domain access control register

012345678910111213141516171819202122232425262728293031

0123456789101112131415

Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-14

Open Access - Preliminary

7.11 Fault-checking Sequence
The sequence by which the MMU checks for access faults is slightly different for
Sections and Pages. The figure below illustrates the sequence for both types of
accesses. The sections and figures that follow describe the conditions that generate
each of the faults.

 Figure 7-10: Sequence for checking faults

violation

no access(00)
reserved(10)

Virtual Address

Check Address Alignment

Get Level One Descriptor

Section Page

misaligned Alignment
Fault

invalid
Section

Translation
Fault

get Page
Table Entry

Check Domain Status

invalid
Page

Translation
Fault

no access(00) Page
Domain

Fault
reserved(10)

Section
Domain

Fault

Section Page

client(01)client(01)

manager(11)

Check Access
Permissions

Check Access
Permissions

Physical Address

Section
Permission

Fault
violation

Sub-Page
Permission

Fault

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-15

Open Access - Preliminary

7.11.1 Alignment fault

If Alignment Fault is enabled (bit 1 in Control Register set), the MMU will generate
an alignment fault on any data word access the address of which is not word-aligned
irrespective of whether the MMU is enabled or not; in other words, if either of virtual
address bits [1:0] are not 0.

Alignment fault will not be generated on any instruction fetch, nor on any byte access.
Note that if the access generates an alignment fault, the access sequence will abort
without reference to further permission checks.

7.11.2 Translation fault

There are two types of translation fault:

Section is generated if the Level One descriptor is marked as invalid.
This happens if bits[1:0] of the descriptor are both 0 or both 1.

Page is generated if the Page Table Entry is marked as invalid.
This happens if bits[1:0] of the entry are both 0 or both 1.

7.11.3 Domain fault

There are two types of domain fault: section and page. In both cases the Level One
descriptor holds the 4-bit Domain field which selects one of the sixteen 2-bit domains
in the Domain Access Control Register. The two bits of the specified domain are then
checked for access permissions as detailed in Table 7-2:Interpreting access
permission (AP) bits on page 7-7. In the case of a section, the domain is checked once
the Level One descriptor is returned, and in the case of a page, the domain is checked
once the Page Table Entry is returned.

If the specified access is either No Access (00) or Reserved (10) then either a Section
Domain Fault or Page Domain Fault occurs.

7.11.4 Permission fault

There are two types of permission fault: section and sub-page. Permission fault is
checked at the same time as Domain fault. If the 2-bit domain field returns client (01),
then the permission access check is invoked as follows:

Section

If the Level One descriptor defines a section-mapped access, then the AP bits of
the descriptor define whether or not the access is allowed according to
Table 7-2:Interpreting access permission (AP) bits on page 7-7. Their interpretation is
dependent upon the setting of the S bit (Control Register bit 8). If the access is not
allowed, a Section Permission fault is generated.

Sub-page

If the Level One descriptor defines a page-mapped access, then the Level Two
descriptor specifies four access permission fields (ap3..ap0) each corresponding to
one quarter of the page. Hence for small pages, ap3 is selected by the top 1KB of the
page, and ap0 is selected by the bottom 1KB of the page; for large pages, ap3 is

Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-16

Open Access - Preliminary

selected by the top 16KB of the page, and ap0 is selected by the bottom 16KB of
the page. The selected AP bits are then interpreted in exactly the same way as for
a section (see Table 7-2:Interpreting access permission (AP) bits on page 7-7),
the only difference being that the fault generated is a sub-page permission fault.

7.12 External Aborts
The ARM7500FE does not support external aborts.

7.12.1 Interaction of the MMU, IDC and write buffer

The MMU, IDC and WB may be enabled/disabled independently. However there are
only five valid combinations. There are no hardware interlocks on these restrictions,
so invalid combinations will cause undefined results.

The following procedures must be observed.

 To enable the MMU:

1 Program the Translation Table Base and Domain Access Control Registers

2 Program Level 1 and Level 2 page tables as required

3 Enable the MMU by setting bit 0 in the Control Register.

Note: Care must be taken if the translated address differs from the untranslated address as
the two instructions following the enabling of the MMU will have been fetched using
“flat translation” and enabling the MMU may be considered as a branch with delayed
execution. A similar situation occurs when the MMU is disabled. Consider the following
code sequence:

MOV R1, #0x1
MCR 15,0,R1,0,0 ; Enable MMU
Fetch Flat
Fetch Flat
Fetch Translated

MMU IDC WB

off off off

on off off

on on off

on off on

on on on

 Table 7-6: Valid MMU, IDC, and WB combinations

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-17

Open Access - Preliminary

To disable the MMU

1 Disable the WB by clearing bit 3 in the Control Register.

2 Disable the IDC by clearing bit 2 in the Control Register.

3 Disable the MMU by clearing bit 0 in the Control Register.

Note: If the MMU is enabled, then disabled and subsequently re-enabled the contents of
the TLB will have been preserved. If these are now invalid, the TLB should be flushed
before re-enabling the MMU.

Disabling of all three functions may be done simultaneously.

7.13 Effect of Reset
See Chapter 4: The ARM Processor Programmers’ Model .

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-18

Open Access - Preliminary

