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1 Introduction

There are a number of different floating-point options on ARM systems, including:

• Hardware coprocessors that execute a floating-point instruction set.

• Software emulation of these hardware coprocessors.

• A software library that implements floating-point arithmetic functions.

These represent various different trade-offs between floating-point performance, system
cost and system flexibility. The purpose of this Application Note is to detail these trade-offs
and provide an indication of the performance available from each option.

Some guidance is also provided about performance tuning of critical sections of floating-
point code, with an example.

Other documentation about ARM floating- and fixed-point systems can be found in:

• Software Development Toolkit User Guide (ARM DUI 0040) Chapter 15 Floating-
Point Support

• Application Note 23: The ARM Floating-Point Emulator (ARM DAI 0023)

• Application Note 33: Fixed-Point Arithmetic on the ARM (ARM DAI 0033)

• Application Note 40: Configuring the FPA Support Code/FPE (ARM DAI 0040)
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2 Floating-Point Systems

This section details the floating-point systems that can be used with an ARM processor,
and the trade-offs that they make between floating-point performance, system cost and
system flexibility.

2.1 Hardware floating-point systems

A hardware floating-point system typically consists of a hardware coprocessor for the ARM
plus some associated “support code”. The latter handles exceptional conditions which
occur too rarely or are too complex for the cost of handling them in hardware to be
justified, or which require software intervention for other reasons (for example, if an error
message is to be produced on floating-point overflow).

The main advantage of a hardware floating-point system is its high performance relative to
software floating-point systems. A typical floating-point operation takes the order of two to
ten machine cycles on a hardware coprocessor, compared with 50−100 or even more
machine cycles for a software floating-point system. At identical clock rates, therefore, a
hardware floating-point system is likely to be considerably faster than a software floating-
point system.

The main disadvantages of a hardware floating-point system are:

• The silicon cost and power consumption of the coprocessor.

• Due to the lack of coprocessor instructions in the Thumb instruction set, all
functions that are to use hardware floating-point must be compiled to ARM code.
The resulting larger code size can increase system cost. Also, if a 16-bit or 8-bit
memory system is being used, there will be some loss of integer performance
associated with the use of ARM code.

• A hardware floating-point coprocessor has a maximum clock speed and requires a
particular electrical interface to the ARM processor. Both of these factors can
reduce the ability of a system using hardware floating-point to take advantage of
improved ARM processors.

Hardware floating-point systems can therefore be characterized as very fast, but rather
costly and inflexible compared with software floating-point systems.

Only one hardware floating-point system is currently available, namely the FPA11 floating-
point coprocessor. It is incorporated into the ARM7500FE processor.
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2.1.1 The FPA11 hardware floating-point system

The FPA11 (and its predecessor, the FPA10) is a floating-point hardware coprocessor,
originally designed to work with the ARM2, ARM3 and ARM6 processors. It is also
compatible with the subsequently developed ARM7 processor and its derivatives
(including ARM7TDMI), but not with ARM8, ARM9 or StrongARM, which use different
hardware interfaces to their coprocessors. Its maximum clock speed is roughly the same
as that of the ARM7 processor on any particular process—the exact limit depends on the
manufacturing process used.

The coprocessor instruction sequencing and hardware coprocessor interface used on ARM2−
ARM7 constrains the speed at which floating-point data can be loaded or stored, to one single
precision value per two cycles or one double precision value per three cycles. The FPA11 can
achieve this speed provided certain hardware interlocks are observed; if they are not, an extra
cycle can be taken. Typical arithmetic operations such as additions and multiplies take two to
eight cycles, again with some interlock requirements; rarer arithmetic operations such as
divisions can take up to 70 cycles. In addition, the FPA11 is capable of performing load/store
operations and arithmetic operations in parallel with each other provided there are no data
dependencies between them.

The cycle counts are designed to be “balanced” with respect to each other, for typical
floating-point code containing about 60% load/store instructions and 40% arithmetic
instructions. There are two main forms of this balance:

• In code that has not been scheduled to avoid interlocks and other effects due to data
dependencies, the number of cycles used by the arithmetic instructions is roughly the
same as the number used by the load/store instructions. This means that while it would
be possible to improve the floating-point performance of such code by speeding up the
arithmetic hardware, such attempts encounter a “law of diminishing returns”. For
example, arithmetic hardware that was twice as fast would only improve the floating-
point performance of such a system by about 30%.

• In code that has been scheduled to avoid interlocks, the number of cycles used by
the arithmetic instructions is roughly the same as the number used by the load/store
instructions, plus the number required for the ARM to issue the arithmetic operations
to the FPA11 hardware. With the two being performed in parallel, this means that a
speed-up of a factor of up to two is available from this scheduling. It also means that
speeding up the arithmetic hardware produces little improvement in floating-point
performance on most such code: it typically results in the arithmetic hardware
standing idle while waiting for its operands to be loaded and its results stored.

2.2 Software floating-point systems
Floating-point can be performed in software by invoking code which breaks down the
floating-point arithmetic operations into a sequence of integer operations, which are
performed using ARM (or Thumb) instructions. There are typically 10−100 integer
operations involved in this sequence (sometimes more), so this normally involves
accepting lower floating-point performance than a hardware floating-point system could
provide. The advantages of a software floating-point system are primarily the reduced
silicon cost and the ability to benefit more quickly from ARM processor developments.
(For example, when a new, faster ARM processor is developed, software floating-point
systems benefit immediately. Hardware floating-point systems may have to wait until a
faster coprocessor has also been developed.)

Software floating-point systems come in two main varieties: hardware emulators and
floating-point libraries. They differ in the way in which the ARM software is invoked which
performs the floating-point arithmetic.
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2.2.1 Hardware emulators

Hardware emulators replace an absent floating-point coprocessor and its associated
support code. The absence of the coprocessor causes the ARM processor to take its
undefined instruction trap for all instructions belonging to that coprocessor, and this trap
causes the floating-point software to be invoked. The hardware emulator therefore
consists primarily of a trap handler which:

• Saves away the register values and other processor state associated with the
code containing the floating-point instruction.

• Loads and decodes the floating-point instruction which caused the undefined
instruction trap to be entered.

• Emulates that instruction, using the saved processor state to provide any register
values and other state that it needs, and modifying the saved state if, for example,
the instruction is supposed to modify a register value.

• Restores the processor state from the saved state and returns to the instruction
following the floating-point instruction.

The main advantage of a floating-point hardware emulator is that it executes precisely the
same code as the corresponding hardware floating-point system. Code can be compiled,
assembled, linked and so on without committing to the precise floating-point system to be
used. This can make it a good solution in cases where fast floating-point is not to be
included in a basic system, but hardware-accelerated floating-point is to be provided as an
optional extra.

The main drawback of a floating-point hardware emulator is that it is intrinsically slow. All
the state-saving, instruction decoding and so on add up to a substantial overhead per
floating-point instruction emulated. Additionally, each floating-point arithmetic operation in
the original program typically has a number of associated load/store instructions. For
example, the statement in the performance-critical inner loop of the Linpack benchmark
contains two arithmetic operations (a multiply and an addition), but requires five FPA11
instructions to be executed (two loads, a multiply, an addition and a store). The net result
is that the already-large overhead is multiplied up further: each floating-point arithmetic
operation in the Linpack benchmark has an overhead equal to about 2.5 times the
instruction emulation overhead.

The FPE (Floating-Point Emulator) is a hardware emulator for the FPA11, and is included
in the ARM Software Development Toolkit.

2.2.2 Floating-point libraries

An alternative software floating-point solution is to make the application code invoke the
floating-point software directly, via library function calls. This requires compilers and
assembler code writers to generate function calls rather than floating-point instructions
when floating-point arithmetic is required, and thus means that different binaries must be
produced than those for hardware coprocessors or emulators for them. This lack of
compatibility with floating-point hardware is the main disadvantage of floating-point
libraries.

Note In principle, it would be possible to address this partially with a floating-point library which
performs its floating-point arithmetic by invoking the hardware coprocessor, rather than
with a sequence of integer operations. However, the procedure entry/exit instructions
involved would create a substantial overhead and a large percentage of the hardware’s
performance would be lost—enough to make it very doubtful whether the silicon cost of
the hardware is justified. This solution has therefore not yet been used or implemented.
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The main advantage of a floating-point library is that it is substantially faster than a
hardware emulator. This is due to three main factors:

• A function call involves much less overhead than entering an undefined trap
handler.

• Fewer function calls need to be made than the number of instructions which would
have had to be emulated—normally, only one function call is required per floating-
point arithmetic operation.

• The fact that fewer function calls are made also means that the floating-point work
is being done in larger “packages”. This can make optimizations available to
floating-point library code that cannot easily be exploited by a hardware emulator.

Between them, these factors can cause an improvement in floating-point performance by
a factor of two or more between a system using a hardware emulator and one using a
floating-point library.

There are also typically some benefits in code size from using a floating-point library. This
is because armlink automatically links in only those library routines that the application
code actually uses. Including a hardware emulator in a system typically means that the
emulation routines for all of that hardware’s functionality are included, regardless of
whether all of the functionality is actually used.

A floating-point library is therefore the recommended floating-point system in most cases
where hardware floating-point performance is not required. A floating-point library is
included in the ARM Software Development Toolkit, and is the default floating-point
system in the toolkit as supplied.

2.3 Floating-point system selection when compiling

The C compiler needs to be told which floating-point system to compile code for, as it
needs to know whether to generate floating-point instructions or floating-point library calls
when floating-point arithmetic is required. This is done via qualifiers to the -apcs option:

• Use the /hardfp/fpe3 qualifiers in order to compile for the FPA11 or the FPE.

• Use the /softfp qualifier in order to compile for the floating-point library.

• Do not use the /hardfp/fpe2 qualifiers unless you need compatibility with
pre-FPA10 implementations of the FPA11 instruction set.
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3 Hardware, Software and Benchmarks Used

The hardware system used for the performance measurements in 4 Floating-Point
Performance of Selected Systems (on page 8) contained an ARM7500FE processor,
running at 32 MHz. The ARM7500FE contains an FPA11 macrocell, which was enabled
for the FPA11 measurements by installing the FPA11 Support Code. For the FPE
measurements, the FPE was installed instead and the FPA11 was therefore left disabled.
For the floating-point library measurements, its use was selected at compile time, as
described in 2.3 Floating-point system selection when compiling on page 6.

The hardware’s memory consisted of EDO RAM, also running at 32 MHz. All
measurements should scale according to the clock speed, up to the maximum clock speed
at which the hardware works.

All compilation, linking and so on was performed using version 2.11 of the ARM Software
Development Toolkit.

The main benchmark used was a C version of the Linpack benchmark. This benchmark’s
inner loop consists of code of the form:

for (i = 1; i <= n; i++)
  dy[i] = dy[i] + da * dx[i];

All floating-point variables are double precision.

For the FPA11 coprocessor and its hardware emulator (the FPE), this code involves two
loads (of dy[i] and dx[i]), a multiplication, an addition and a store (of dy[i]) per
iteration. The value da is kept in a floating-point register throughout the loop, so does not
need to be loaded within the loop. Profiling of various floating-point programs has shown
that this mix of floating-point operations is fairly typical.

For the floating-point library, this code involves one procedure call each to the double
precision arithmetic routines _dadd and _dmul, plus various ARM instructions to access
the arrays of floating-point values.

A second version of the Linpack benchmark was also used, in which the inner loop shown
above is optimized for the FPA11. This optimization primarily consists of rewriting the C
code in such a way as to induce the compiler to avoid data dependencies between
adjacent instructions. This enables the FPA11 to avoid interlocks and take advantage of its
ability to perform load/store and arithmetic instructions in parallel. The results of this
version of the benchmark are primarily of interest because they indicate what sort of
additional performance the FPA11 is capable of if code is scheduled well.

For more details of how this code was optimized for the FPA11, see 6 Example:
Optimizing the Linpack Inner Loop on page 12.
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4 Floating-Point Performance of Selected Systems

The following table shows floating-point performance figures obtained in practice from the
systems and benchmarks described in 3 Hardware, Software and Benchmarks Used on
page 7.

Floating-point
system

Linpack
performance

FPA11-optimized
Linpack performance

FPA11 + support code 1.83 Mflops 2.75 Mflops

FPE (FPA11 emulator) 56 kflops 53 kflops

Floating-point library 150 kflops 150 kflops

These figures illustrate the main points made about floating-point performance in
2 Floating-Point Systems on page 3. The hardware floating-point system is the fastest,
and is more than 30 times faster than its hardware emulator (rising to 50 times faster if the
code is optimized for the hardware). However, if the use of floating-point hardware is not
anticipated and a pure software floating-point system is wanted, the floating-point library
offers a significant speed advantage over the use of a hardware emulator (by a factor of
about 2.7 for this particular program).

Note The exact cause of the slight drop in FPE performance when the benchmark is optimized
for the FPA11 is unknown, but is probably a cache effect caused by reduced locality in its
use of data and/or the FPE code.
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5 Improving Floating-Point Performance

This section gives a number of suggestions for improving the performance of a program
that uses floating-point arithmetic. It addresses this issue at the “micro-optimization” level;
that is, it assumes that more global optimizations like selecting the right algorithm for the
job have already been done, and that all that needs to be done at this point is to make the
program use the chosen floating-point system as efficiently as possible.

It is strongly recommended that the sort of optimizations described in this section are only
performed at a late stage in development, after ensuring that all sensible algorithmic
optimizations have already been performed. Trying to apply these optimizations too early in a
development can lead to a lot of wasted effort if the algorithms are subsequently changed.

As always with optimization work, it is important to profile the code being optimized, to find out
which code sections are using significant amounts of time, and to concentrate the optimization
efforts on those sections. This is particularly true for micro-optimization work, since it is typically
labor-intensive and often system-specific: unless it is carefully targeted at the areas which will
really benefit from it, such work can consume a lot of effort for very little return.

The system-specific nature of micro-optimization work also means that it is usually worth
keeping a record of which code sections were optimized and of the pre-optimization code,
to aid with porting to new floating-point systems. In C, a simple technique for doing this
involves the use of conditional compilation of the following form:

#if defined(OPTIMIZED_FOR_FPA11)
  ... code optimized for FPA11 ...
#elif defined(OPTIMIZED_FOR_FPE)
  ... code optimized for FPE ...
#else
  ... original unoptimized code ...
#endif

Further system-specific optimizations can easily be added to this structure, and can be
based on the unoptimized code (as opposed to having to undo the optimizations for one of
the other systems before starting to optimize for the new system).

The rest of this section describes some floating-point micro-optimization techniques that
should be of benefit on all floating-point systems, and some system-specific techniques for
particular floating-point systems. (No system-specific section exists for the floating-point
library, as the optimization techniques that apply to it are covered in the general section.)

5.1 General techniques for optimizing floating-point code

It is often worth examining the assembler output of the compiler (using the -S option) for
inefficiencies in the code it has generated. One particular point to bear in mind when
generating code for a floating-point coprocessor (or an emulator of one) is that ARM
coprocessor instructions do not include register-indexed loads and stores. This makes
indexed accesses to arrays of floating-point numbers take at least two instructions—one to
calculate the correct address, the other to perform the memory access.

The coprocessor load/store instructions do, however, include forms which update their
base register by a constant. In code which scans through an array sequentially, this
means that indexed array accesses can often be replaced profitably with pointer accesses,
together with increments or decrements of the pointers. (For an example of this, see 6
Example: Optimizing the Linpack Inner Loop on page 12.)
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Try to avoid divisions where possible: they are significantly slower than multiplications and
additions on most floating-point systems. For example, if many numbers are to be divided
by the same value, it is often worth calculating the reciprocal of the divisor and multiplying
by it instead:

for (i = 0; i < n; i++)             /* Original code      */
  data[i] = data[i] / scalefactor;

reciprocal = 1.0 / scalefactor;     /* Faster alternative */
for (i = 0; i < n; i++)
  data[i] = data[i] * reciprocal;

Overall, this replaces N divisions by one division and N multiplications, and produces a
substantial gain in performance on all ARM floating-point systems to date.

However, take care with this optimization in code which is sensitive to rounding errors.
There are two rounding errors involved in the calculation of each final value of data[i]
(one when calculating the reciprocal, the other in the multiplication). This makes its
maximum overall rounding error larger than that of the original code.

5.2 Optimizing floating-point code for the FPA11

There are three important aspects of the FPA11 that lead to opportunities to optimize
floating-point code:

• Interlocks due to pipelining effects: most instructions will take an extra cycle or two
if their result is used by the immediately following instruction.

• Parallel execution: FPA11 instructions which involve no data communication with
the ARM processor (arithmetic instructions, but not load/store instructions, FIXes,
FLTs, compares and FPSR transfers) only require a single ARM cycle each to
issue them to the FPA11. All the remaining cycles of their execution can occur in
parallel with ARM instructions. They can also occur in parallel with floating-point
load/store instructions, provided that:

- Store instructions do not try to store the results of the arithmetic instruction: if
they do, they will interlock until the result of the arithmetic operation is ready.

- Load instructions do not overwrite the operands of the arithmetic instruction
too soon: if they do, they may have to interlock until it is known that the
operand is not required for subsequent exception processing.

• Speculative execution: once an instruction has entered the ARM’s pipeline, the
FPA11 can start executing it. The speculative execution is restricted to execution
that does not change the coprocessor state: for example, if a multiply instruction is
executed speculatively, the multiplication itself will occur, but the result will not be
written back to the register file until the instruction reaches the execute stage of
the ARM’s pipeline. (If the instruction does not reach the execute stage of the
ARM’s pipeline, due for example to an intervening branch, the result is discarded.)
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Producing code which exploits these features of the FPA11 optimally is quite hard. However,
observing the following guidelines usually leads to results that are close to optimal:

• Try to interleave load/store instructions with arithmetic instructions as far as
possible.

• Try to avoid cases where two consecutive floating-point instructions use the same
floating-point registers.

• Try to execute other instructions (ARM instructions or floating-point load/store
instructions) in parallel with arithmetic instructions. This rule is particularly
important for multiply instructions, because:

- Unlike most simpler arithmetic instructions (such as additions), they take
enough cycles (five for FML or eight for MUF) that it is usually worthwhile
finding more than one instruction that can execute in parallel with the multiply.

- Unlike the more complex arithmetic instructions (primarily divisions), they do
not take so long that it is hard to find enough instructions to execute in parallel
with them.

• When placing instructions that are to be executed in parallel with an arithmetic
instruction, it is normal to place them after the arithmetic instruction. However,
speculative execution means that multi-cycle instructions can be placed one or
two instructions before the arithmetic instruction and still effectively be executed in
parallel with them.

An example which uses most of these guidelines can be found in 6 Example: Optimizing
the Linpack Inner Loop on page 12.

5.3 Optimizing floating-point code for the FPE

The FPE contains an optimization to avoid some of the overhead associated with every
emulation of a floating-point instruction. Before returning from emulating one instruction, it
checks whether the next instruction in memory is also a floating-point instruction. If so, it
emulates that instruction as well, then looks at the next instruction. If not, it returns normally.

The net result is that the overhead of entering and leaving the FPE is only paid once per
sequence of consecutive floating-point instructions, not once per floating-point instruction.
Other aspects of the FPE’s overhead (such as loading and decoding the instruction) still
have to be paid once per instruction, but a significant gain in performance (of the order of
10−20%) can be obtained by trying to ensure that the floating-point instructions occur in
“clusters”.

Unfortunately, in some cases, this conflicts with the wish to intersperse ARM and floating-
point instructions to take advantage of the FPA11’s parallel execution ability. When this
occurs, it is necessary to decide whether FPA11 or FPE performance is more important
for the application concerned.
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6 Example: Optimizing the Linpack Inner Loop

This section describes how the Linpack benchmark’s inner loop was changed to produce
the optimized version described in 3 Hardware, Software and Benchmarks Used on
page 7. The code was optimized for the FPA11; there were some slight negative side
effects on its performance on the FPE.

The original C code for the inner loop was:

for (i = 1; i <= n; i++)
  dy[i] = dy[i] + da * dx[i];

In this code, i and n are integers, da is a double precision floating-point number and dx[] and
dy[] are arrays of double precision floating-point numbers. It is also known from an earlier test
in the function concerned that n is greater than 0: this allows some of the optimizations below to
be expressed more simply. (The compiler does not know this, however, so some of the code it
generates contains redundant tests of whether n is less than 1.)

Compiling this for the FPA11 with the compiler’s -S option led to the following assembly code.

Note All comments have been inserted by hand after compilation, rather than being generated
by the compiler, and the variable da is in register f0 at the start of the code—the same is
true for all other assembler code in this section.

        MOV      a2,#1                  ; i = 1
        CMP      a1,#1                  ; Test for n < 1, and return
        LDMLTIA  sp!,{v1-v4,pc}         ;  if so (won’t ever happen)
|L0007d8.J21.daxpy|
        ADD      a3,lr,a2,LSL #3        ; Address dy[i]
        LDFD     f2,[a3,#0]             ;  and load dy[i] into f2
        ADD      ip,a4,a2,LSL #3        ; Address dx[i]
        LDFD     f1,[ip,#0]             ;  and load dx[i] into f1
        MUFD     f1,f1,f0               ; Calculate da * dx[i],
        ADFD     f1,f2,f1               ;  then dy[i] + da * dx[i]
        STFD     f1,[a3,#0]             ;  and store back to dy[i]
        ADD      a2,a2,#1               ; i++
        CMP      a2,a1                  ; Test for i <= n
        BLE      |L0007d8.J21.daxpy|    ;  and loop if so

The first thing to do to this code is to apply the techniques described in 5.1 General
techniques for optimizing floating-point code on page 9. The code does not contain
any divisions, but does contain some array accesses. These result in two ADD instructions
to calculate the addresses of the required elements.

Since this code scans through the dx[] and dy[] arrays sequentially, it is easy to add
two suitable pointer variables and rewrite the code to use pointer arithmetic:

double *xptr, *yptr;

xptr = &dx[1];
yptr = &dy[1];
for (i = n-1; i >= 0; i--)
{
  *yptr = *yptr + da * (*xptr);
  yptr++;
  xptr++;
}
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The loop variable i is no longer used as an array index, and is now only needed for the
purpose of ensuring that the loop is executed the right number of times. This allows the
original loop variable, which incremented from one to n, to be replaced by one which
decrements from n-1 to zero. This results in more efficient ARM code, as the comparison
with zero can be incorporated into the loop index subtraction.

This results in the following assembler code from the compiler:

        ADD      a2,a4,#8               ; xptr = &dx[1]
        ADD      a3,lr,#8               ; yptr = &dy[1]
        SUBS     a1,a1,#1               ; i = n-1
        LDMMIIA  sp!,{v1-v4,pc}         ; (redundant) if n<1, return
|L0007dc.J21.daxpy|
        LDFD     f1,[a2],#8             ; Load *xptr, then xptr++
        MUFD     f2,f0,f1               ; Calculate da * (*xptr)
        LDFD     f1,[a3,#0]             ; Load *yptr
        ADFD     f1,f2,f1               ; Calc. *yptr + da * (*xptr)
        STFD     f1,[a3],#8             ; Store to *yptr, then yptr++
        SUBS     a1,a1,#1               ; i--
        BPL      |L0007dc.J21.daxpy|    ; Loop if i >= 0

Note As a side effect of these changes, the floating-point instructions occur in a single cluster
of five instructions per iteration, rather than as an isolated instruction and a cluster of
four instructions. In principle, this should slightly improve the code’s performance on the
FPE (see 5.2 Optimizing floating-point code for the FPA11 on page 10);
unfortunately, other negative side effects (probably cache-related) of the changes
appear to have outweighed this.

This code is now reasonably efficient as far as the ARM code is concerned. However, on
the FPA11 there are a number of inefficiencies:

• The MUFD instruction uses the result of the first LDFD instruction, resulting in an
interlock between them. There are similar interlocks between the second LDFD
and the ADFD, and between the ADFD and the STFD.

• The only instruction that can be executed in parallel with the MUFD instruction is
the second LDFD instruction. This does not provide enough cycles of parallel
execution to cover the latency of the MUFD instruction, with the result that the
ADFD has to wait for the result of the MUFD, and so will interlock with it.

• With the ADFD instruction depending on the result of the instruction before it and
having its result used by the next instruction, there is no possibility of any code
being executed in parallel with the ADFD.

• The “loop overhead” instructions (the SUBS and BPL at the end of the loop) are
executed at a time when the FPA11 has nothing to do.

As a result, the “critical path” through the loop code passes through the LDFD, MUFD,
ADFD, STFD, SUBS, BPL instructions, with each floating-point instruction depending on
the previous one. This means that the “latency” cycle counts for the FPA11 are
appropriate, leading to a cycle count of about 4+4+9+4+1+3 = 25 cycles per loop iteration.
(The original code took three cycles more, or about 28 cycles per loop iteration.)
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To improve this, the first step is to use some extra double precision variables in the C code
to break the calculation up into the separate load, multiply, add and store operations:

double *xptr, *yptr, x_loaded, y_loaded, product, sum;

xptr = &dx[1];
yptr = &dy[1];
for (i = n-1; i >= 0; i--)
{
  x_loaded = *xptr;
  product = da * x_loaded;
  y_loaded = *yptr;
  sum = y_loaded + product;
  *yptr = sum;
  yptr++;
  xptr++;
}

This makes no real difference to the compiled code (a few register allocations change), but
permits the next step, which is to re-arrange the loop so that the loop overhead
instructions occur just after the multiplication. This involves taking one complete iteration
out of the loop, with the multiply and all instructions preceding it being taken out of the
start of the loop, and all instructions following it being taken out of the end of the loop:

double *xptr, *yptr, x_loaded, y_loaded, product, sum;

xptr = &dx[1];
yptr = &dy[1];
x_loaded = *xptr;
product = da * x_loaded;
y_loaded = *yptr;
for (i = n-2; i >= 0; i--)
{
  sum = y_loaded + product;
  *yptr = sum;
  yptr++;
  xptr++;
  x_loaded = *xptr;
  product = da * x_loaded;
  y_loaded = *yptr;
}
sum = y_loaded + product;
*yptr = sum;
yptr++;
xptr++;

It is no longer clear that the loop will be executed at least once: this means that the
compiler-generated start-of-loop test is no longer redundant. However, benefit is still
gained from the original knowledge that the loop was executed at least once—otherwise,
this code would need to be surrounded with a test that n is greater than zero.
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After eliminating the final yptr++ and xptr++ statements on the grounds of redundancy,
this compiles to the following assembler code:

        ADD      a2,a4,#8               ; xptr = &dx[1]
        ADD      a3,lr,#8               ; yptr = &dy[1]
        LDFD     f0,[a2,#0]             ; x_loaded = *xptr
        MUFD     f0,f1,f0               ; product = da * x_loaded
        LDFD     f2,[a3,#0]             ; y_loaded = *yptr
        SUBS     a1,a1,#2               ; i = n-2, and branch past
        BMI      |L000804.J22.daxpy|    ;  loop if i already < 0
|L0007e8.J21.daxpy|
        ADFD     f0,f2,f0               ; sum = y_loaded + product
        STFD     f0,[a3],#8             ; *yptr = sum, then yptr++
        LDFD     f0,[a2,#8]!            ; xptr++; x_loaded = *xptr
        MUFD     f0,f1,f0               ; product = da * x_loaded
        LDFD     f2,[a3,#0]             ; y_loaded = *yptr
        SUBS     a1,a1,#1               ; i--
        BPL      |L0007e8.J21.daxpy|    ; Loop if i >= 0
|L000804.J22.daxpy|
        ADFD     f0,f2,f0               ; sum = y_loaded + product
        STFD     f0,[a3,#0]             ; *yptr = sum

Now the MUFD instruction is executed in parallel with an LDFD instruction and the loop
overhead instructions. There are still some interlocks, but the critical path through the code
has been reduced to the LDFD/MUFD pair at the end of one iteration followed by the
ADFD/STFD pair at the start of the next iteration, or about 4+9+4+4 = 21 cycles.

One final optimization is possible in most circumstances: the operations can be reordered
in the loop so as to reduce the amount of interlocking and further increase the number of
instructions that can be executed in parallel with the floating-point arithmetic instructions.
To do this, the order of the STFD instruction and the following LDFD instruction must be
reversed. This is legitimate provided that the two instructions are not accessing the same
double precision number—in this example, that dx[i+1] and dy[i] are not the same
location. This can normally be expected to be the case, and can in fact be verified as
always being true in the Linpack benchmark.

Having interchanged the STFD with the following LDFD, the operations in the loop can be
rearranged almost at will. Note in particular that you can always interchange the STFD
with the other LDFD, since they access different elements of the same dy[] array. A
reasonable final order for the resulting code is:

double *xptr, *yptr, x_loaded, y_loaded, product, sum;

xptr = &dx[1];
yptr = &dy[1];
x_loaded = *xptr;
product = da * x_loaded;
y_loaded = *yptr;
for (i = n-2; i >= 0; i--)
{
  xptr++;
  x_loaded = *xptr;
  sum = y_loaded + product;
  y_loaded = *(yptr+1);
  product = da * x_loaded;
  *yptr = sum;
  yptr++;
}
sum = y_loaded + product;
*yptr = sum;
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This compiles to the following code:

        ADD      a2,a4,#8               ; xptr = &dx[1]
        ADD      a3,lr,#8               ; yptr = &dy[1]
        LDFD     f0,[a2,#0]             ; x_loaded = *xptr
        MUFD     f0,f2,f0               ; product = da * x_loaded
        LDFD     f1,[a3,#0]             ; y_loaded = *yptr
        SUBS     a1,a1,#2               ; i = n-2, and branch past
        BMI      |L00080c.J22.daxpy|    ;  loop if i already < 0
|L0007f0.J21.daxpy|
        LDFD     f4,[a2,#8]!            ; xptr++; x_loaded = *xptr
        ADFD     f3,f1,f0               ; sum = y_loaded + product
        LDFD     f1,[a3,#8]             ; y_loaded = *(y_ptr+1)
        MUFD     f0,f2,f4               ; product = da * x_loaded
        STFD     f3,[a3],#8             ; *yptr = sum, then yptr++
        SUBS     a1,a1,#1               ; i--
        BPL      |L0007f0.J21.daxpy|    ; Loop if i >= 0
|L00080c.J22.daxpy|
        ADFD     f0,f1,f0               ; sum = y_loaded * product
        STFD     f0,[a3,#0]             ; *yptr = sum

This code comes close to obeying all the guidelines given in 5.2 Optimizing floating-
point code for the FPA11 on page 10: the only breach of them within the loop is that
the ADFD instruction is followed by an LDFD instruction that loads one of the ADFD’s
operands. Determining how many cycles it takes per iteration is quite a complex
modeling job and beyond the scope of this Application Note; it can however be expected
to lie close to the higher of the two minima implied by the ARM instruction cycle counts
and by the FPA11’s arithmetic unit. The former minimum is 3+1+3+1+3+1+3 = 15 cycles
for the seven instructions in the loop; the latter is 2+8 = 10 cycles for the ADFD and
MUFD instructions. This code can therefore be expected to take something of the order
of 15−17 cycles per iteration.

Compared with the original cycle count of 28 cycles per iteration, this represents a
performance increase by a factor in the range 1.65−1.85. After taking account of the fact
that this loop does not contain all the floating-point operations in the Linpack benchmark,
and that the optimized code is relatively more affected by overheads such as cache
misses, this calculated increase is a reasonable match to the performance increase by a
factor of 1.5 actually observed in practice (see 4 Floating-Point Performance of
Selected Systems on page 8).

Further increases in performance are possible by techniques such as loop unrolling.
These may however require somewhat more serious trade-offs between code size and
performance than the optimizations performed so far. Despite the large increase in C
source code size, the optimizations above have only resulted in a net increase in the code
size by three instructions (from 13 originally to 16 at the end).


